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1. The isotropy postulate C 11 b The general mathematical theory of 

plasticity is being developed primarily for solid bodies, whose material 

in the undeformed state is isotropic or quasi-isotropic (polycrystalline), 

obeys Hooke’s law in the elastic region end in which the formation of 

plastic deformations is characterized by a plasticity condition which co- 

incides with sufficient accuracy with the HubepMises condition (as, for 

example, the Tresca and other conditions , which replace the Mises surface 

by polygones which are close to it, etc. ). For the sake of brevity such 

bodies will be called isotropic in the initial state. 

In approaching the problem of stress-strain relations, which deter- 

mine the basis of the theory, the various plasticity conditions of the 

indicated type may be called approximate representations of the Mises 

condition in all those cases in which the ensuing consequences do not 

differ essentially. 

Let us consider a fixed physical point of the body (in the usual sense 

of continuum mechanics) and a system of orthogonal coordinates (1,2,3). 

The state of stress and strain in the vicinity of the point at the in- 

stant of time t and for small deformations is characterized by the stress 

deviator0 ..(t), the strain deviator s..(t), the mean stressa- and 

the mean eiingation e(t), whereby all t&se quantities are assumed to be 

eqnal to zero in the initial state (for t = 0). ‘Ihe state of stress and 

strain in the vicinity of the point M is always homogeneous, and there 

fore this point may always be associated with a body T of arbitrary 

shape and made from the smne material, being in the smae homogeneous 

state of stress and strain and the same external conditions (i.e. a 

specimen, subjected to a test). The small vicinity of the point M is 

assumed, however, to be sufficiently large, such that the laws for 
identical processes in M and T (i.e. for exqle, processes with like 

given functions ~ij(t), e(t)) be identical. 
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Taking into 
( S'ii = 0) and 
nonhomogeneity 

account the linear dependence of the components sij 

of the components CT . . bii = O), as well as their physical 
(elongation, shears:' normal and shear stresses), the 

author [l 1 introduced five-dimensional orthogonal Cartesian strain 
vectors a= 3ne, (where e, is a unit base vector) and the stress vectors 
o(o,,), as well as the corresponding spaces, with the usual laws of addi- 
tion and scalar multiplication in each one of them. These will be used 
below. The components of the strain deviator sij are expressed in terms 
of the components of the vector 3 by means of the formulas 

311 
s v c - -31cosp +3zsin p, 

322 g If 
3 

=-3,sin(~++-7t)+3zCOS(~+~~) 323 
G- 
;i = 3*cos5 It (1.1) 

+31sin(p-t x)-32cos(p-_r) 331 v- ;i-=3scos$x 3 

where @ is an arbitrary constant number. 'lbe components oij are related 

to o, by means of exactly the ssme formulas, with the sane /3. 

It follows from (1.1) that if some five-dimensional vector z is re- 
lated to B by means of a linear dependence z = L( 1, then the coaqonents 
of the tensor 2.. are related to 

t' 
3 ij by means Of formulas 2.. = L( 3ij). 

t' 

lhe process of deformation at the point& for in the body T) is re- 
presented in course of time in the space 3, by means of the strain tra- 
jectory aft). lhe scalar geometric characteristics of the strain tra- 
jectory kdulus a, are length s, ds = 1 da 1, four parmneters of curva- 
ture and torsion K) are the invariants of the tensor Sij: 

ds = dsij 2, 

TW processes of deformation (referred to the same physical axes (1, 
2,3) are called identical (and are physically identical) if their 
trajectories in 3, coincide identically and if at the corresponding 
geometric points of the trajectories the velocities ds/dt are the same, 
in other words if the times t coincide. If the physical properties of 
the body do not depend on time explicitly (phenomena of the creep and 
relaxation type are absent), then the last requirement in the character- 
ization of identical processes is removed. 

At each point of the strain trajectory, using, generally speaking, 
five linearly independent vector derivatives da /ds, . . . . d5a/ds5, it 
is possible to construct a unique orthogonal Cartesian set of unit base 
vectors _ 

da 
P=Pl=&t 

1 d% 
P2= x,ds 2 ,-*-, PS 
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determined merely by the internal geometry of the strain trajectory. ‘lhe 

general i zed Frenet formulas 

dP9I 
-& = %iPir x,i = I oxn_, 

I 

:i”n”-:; n + i) 
(l-3) 

33 (i = n -+ 1) 

Where Kni is the antisymnetric curvature tensor (K~ I KS I 01, permit us 

to express any derivative d”a /dsa (for m = 0 and m > 5) in terms of 

Pl, . . . . p5 and some scalar quantities (the curvature parmneters K~, 

. ..) K, and their derivatives with respect to s). It follows that any 

operator L( a,), linear with respect to the vector a,, may be represented 

by a five-term formula along the arc s or the time t. 

L (4 = PIP,+ - - * + P,P, 

where P,, are scalars (depending on S,K, dK/ds, . . .I. 

(l-4) 

In as much as under given external conditions (heating and other forms 

of penetrating action) there corresponds physically to each point of the 

given strain trajectory its own determined stress vector u, it can be 

constructed formally at each point of the strain trqjectory, assuning 

this point to be the initial one with respect to u, and plotting the 

components 0” at a certain scale in the corresponding directions of the 

base set e,, i.e. it is possible to write down the vector u in the form 

0 = ulel + . . . uses. ‘lhereby, one can determine in an equally formal 

manner the elementary nworkW of the stress vector u done in the strain 

trajectory along the path dq i.e. ada, which coincides with the 

physical vork of the internal forces u ij during the interval of time dt 
in a unit volume of the body 

oda FZ andan = oijdaij (1.5) 

‘Ihe integral _f uda along the trty ectory gives the total work during 

the time t. ‘Ihe stress vector u may also be represented with respect to 

the base set p, 

0 = &Pn, &I= oSn*Pm (1.6) 

and S, may be called the natural components of the stress vector. ‘Ihe 

work will then be given by 

The complete strain trajectory, together with the stress vectors and 
other physical vectors constructed at all its points, we shall call the 

pattern of the process of deformation of the body in .Y5. ‘Ihe patterns 

uda = S,ds 
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of processes of simultaneous deformation at different points of the body 

in 3, are different (in a coamon system of Cartesian coordinates (1,2, 

3), and in initially like bodies they coincide identically for like ex- 

ternal conditions only in the case of homogeneous deformation of the 

body* 

In addition to a certain arbitrary fixed-strain trajectory one could 

consider also the totality of all other trajectories in 3, which possess 

the same or the sign-reversed curvature at corresponding points (I(, for 

same s are the same or of opposite sign). All these trajectories may be 

reduced to a single one by means of linear transformations of rotation 

and reflection: B = (apnn) a’, whereby the quadratic orthogonal normalized 

matrix of cosines will take on arbitrary values (independent of t ), and 

will have a determinant 1 a,, 1 = + 1 for rotations and 1 arm 1 = - 1 for 

reflections. 

The transformation of a pattern of a process of deformation in by 

means of matrix (a,,) (simultaneous transformation of vectors , (I... 1 
is described as rotation and reflection of the pattern. 

Numerous considerations and facts indicate that the physical proper- 

ties of initially isotropic bodies, more exactly the relationship between 

the vectors u and a, are in accord with the isotropy postulate which 

states: the pattern of the process of deformation is invariant with re- 

spect to the transformations of rotation and reflection, i.e. the repre- 

sentation of the stress vector in the natural base set p, of the strain 

trajectory is invariant with respect to these transformations. This 

means that the components in (1.6) are transformation invariants, i.e. 

they depend (possibly in a very complicated manner, for exsmple source- 

like) only on the arc length s, the curvatures K, of the trajectory, and 

(in the presence of properties of the type creep-relaxation) on the velo- 

city ds/dt. 

lhe postulate of isotropy, as applied to plasticity, was verified by 

tests of Lenskii [2,3 1 and several others; Lenskii observed rather com- 

plex nonanalytical trajectories with many corner points on the trajectory, 

including unloading and secondary loading. 

2. Isomorphism. Instead of the basic space 3, one can take the 

stress space 05, in which the loading process is determined by tv( t ) and 

the pattern of a definite loading process may be called the stress tra- 

jectory, together with the strain vector a and other quantities, con- 

structed at each of its points, for example with respect to the natural 

set 9, 
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‘Ihe postulate of isotropy may now be formulated also in the space u5; the 

pattern of the process in u5 is invariant with respect to transformations 

of rotation and reflection, i.e. in the rep*Tesentation 

a = E,q,{- . . . + E,q, 

the coefficients depend only on the invariants Z and k. 

In general, one can determine two linearly independent five-dimensional 

vectors 

1 = L (a, IT), l’=L’(a, G) (2.2) 

where L, L’ are linear operators with respect to 3 and u (not their in- 

variants), whereby I, I’ are invariant with respect to the transform- 

ations of rotation md reflection with the same matrix (a. .). The pattern 

of the loading process may be, for exqle, the trajectoryof the vector 

I(t) in Z,, and the vectors 1’. constructed at each of its points, where- 

by the natural base set rI, . ..) r5 is obtained from I(t) just as 

Pl, p5 is obtained from a(t), or ql, q from o(t), Rich means 

that*tC’is determined by the invariants dX ‘l’/d?l , K, = (d*I/dX* . . . 

‘lhe isotropy postulate, in this case, asserts the invariance of the 

pattern of the process in l,, i.e. its invariance with respect to trans- 

formations with the aid of the matrix (a J; thus 

l’= A,r,-I- . . . -I- A6r5 (2.3) 

where A,, . . . h 5’ depend only on the curvature K and the arc length A . 

There are no principal reasons to make a preferred selection among 

the representations of the law connecting u and 3 in the infinite 

variety of forms (1.6), (2.1) and (2.3) with invariant coefficients Sn, 

En9 ‘n and the parameters s, K, 2, k, A, K; they are all obtained from 

the isotropy postulate in the corresponding space. ‘lhus, it is natural 

to formulate the following theorem. 

Theorem of isomorphism. For one and the same material whose process of 

deformation begins and proceeds under like external conditions, the iso- 

tropy postulate is equally valid in the spaces of strain a52 of stress 

us and the derived spaces 1,. ‘Ihis means that the relations a - 3 in 

different forms (1.6) (2.1) and (2.3) are identical, in the sense that 

they yield one and the same physical law, provided the initial conditions 

(at the point t = 0, u = 0, o = 0) are the sane. 

The proof of the isomorphism theorem is based on the fact that in any 

one space for example in 3,, the isotropy postulate is valid. Ry means 

of quintuple differentiation of (1.6) we find the base set q,, . . . ,q5 
using Frenct’s formula for p, 
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qldz = (&I 2 + pn 2) ds = ,!?,(I)~, ds, . . . 

and the relation between the invariants (s, K, 8, k), expressing the p, 

through qn, is found thereafter as 

8 L 

3= [ Plds = \E,Pq& 
0 0 

and therefore also (2.11, since on the right-hand side there is a linear 

operator with respect to u, which, as was already indicated above (1.41, 

may be represented with respect to the base set q,. Having now tare re- 

presentations (1.6) and (2.1) and constructing from these the vectors 

I = L( 3, 01 and I'-= L'( a, 01, one can find the base sets F, and r,', 

and, eliminating p 

in accordance to ( 1 
, q,,, to represent I' with respect to the base set r,, 

.3), i.e. to determine A,,; the actual carrying-out 

to completion of these transformations will meet with difficulties, be- 

cause the nonlinear relations between the invariants s, K and s, k, h, K 
may be implicit and functional. The requirements of reciprocal single- 

valuedness of the representations (1.61, (2.1) and (2.3) will impose 

limitations on the dependence of the components S,,, En, An on s and K, 

Z and k and X and K, respectively, but these limitations are natural. 

3. Some consequences of the isotropy postulate. The relations 
between the stresses CT,. and the strains a.. for macro-volumes of 

initially isotropic boi!es, which are sanet;Aes called the mechanical 

equations of state, are divided into vector and scalar ones [l 1. ‘Ike 
isotropy postulate determines the vectorial properties and reduces the 

problem of determining the relations between o and to the determination 

of scalar properties only. For all cases of simple loading, independent 

ly of the rheological properties of the body, the isotropy postulate 

yields a vector law, which can always be reduced to the most simple form 

o=Qa ( 
0 

3 
aij = y- aii 1 (3.1) 

which means that the scalar properties can be determined completely by 

the most simple tests (the behavior of the specimen under simple ex- 

tension or torsion, etc.) which determine a single unknown function u 

in terms of a, ds, /dt. Formula (3.11 establishes a general physical 

law for initially isotropic materials subjected to simple (proportional) 

loading, [ 4 1. 

For metals we obtain in cases of trajectories with small curvature 
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[ 1 1 , when K,,i from (1.3) satisfies the condition IKni 1 < l/fe, (e, is 
the limiting elastic elongation, fz 4- 10) from the postulate of iso- 
tropy, as a consequence of the after effect I. 1,2 I, Q = S,p, or 

(392) 

whereby this law contains (3.11, because for simple loading do jds = s 13. 
From what was said above, the difference between (3.11, (3.2) and both 
the ndefoxmational theory” and the most simple theory of plastic flow be- 
comes clear: relations (3.1) and (3.2) represent a general theory of 
plasticity for definite classes of deformational trajectories (simple and 
almost sinple loading and trajectories of small curvature). 

For arbitrary analytical trajectories of deformation the isotropy 
postulate and the isomorphism theorem yield the relation ( 1.6) between u 
and s which may be written down in the form of a five-term formula 

N+4 

U= 2 FN,,$- 
n=N 

(3.3) 

Here N is an arbitrary integer, FNn are universal functions (operators, 
functionals) which depend on s and the curvatures at the point s or at 
the point s = so = const (so is an arbitrary fixed point). 

If the traSectory is not an analytical curve, but consists of pieces 
of analytical curves interconnected by nonanalytical points (for example, 
corners), then (3.3) is conserved on each piece; it is thereby assumed 
of course that the vectors d”a /ds” entering into (3.3) are linearly in- 
dependent. 

In the general case of nonanalytical trajectories, the derivatives in 
(3.3) should be replaced by difference relations; if at the point s. 
using the preceding portion of the trajectory (in the region of Plastic 
deformation ) one can construct only a > 5 linearly independent vectors, 
only an m-term formula will be used to express u in terms of a. 

In principle, the relation between the macro-stress u and strain 3 
may be found theoretically; a physical investigation should yield the 
mechanics of plastic deformation of a crystal (or a molecule) of the 
material, statistically mechanics should lead to equations of state and 
hence give the sought relation u -a . In as much as the isotropy postu 
late is in accord with macroscopic tests, the deductions from the iso- 
tropy postulate and the molecular theory will coincide (of course, with 
a certain accuracy), whereby the deductions from the latter theory will 
be broader, because they will give not only the vectorial but also the 
scalar properties, i.e. the form of the functions FNn in (3.3); the 
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noncoincidence of the deductions would indicate that in the unavoidable 
multitude of assumptions, of both physical and mathematical character in 
the theoretical deduction of the equation of state, inaccuracies are con- 
tained. From our point of view, the following semi-inverse problem is of 
interest: the theory of probability of weakly interacting random pro- 
cesses is known, the probable character of grain distribution with re- 
spect to size and mutual crystallographic orientation is known, certain 
properties of plasticity mechanism in the grain are known (allowable 

shears, etc. ) : what is the class of supplementary physical information. 

possessing the property that the macrorelations u ~3 satisfy the iso- 
tropy postulate? The solution of this problem would clarify new proper- 
ties of plastic microdeformations and the methods of their statistical 
treatment. 

4. Elasto-plastic properties for loading along a broken 
line (with one corner point). Let in strain space 3, the strain 

trajectory represent simple loading along an arbitrary unit vector p to 

the point s = 1 a 1 = 3, in which at the instant t0 there occurs a dis- 

continuity of the trajectory and the further process proceeds along an 

arbitrary vector pl, whereby at the instant t > t0 the deformation is 

characterized by the vector al (Fig. 1) 

6s =s1-s, 63= 31-3, p=+, 
6a 

Pl= 6s (4.1) 

Such processes of loading have practical significance and are realized 
in bodies under simple loading up to the moment of stability loss and the 
subsequent deformation in the posteritical range. Thereby, the loading 
may also change abruptly at the instant of loss of stability and there- 
after vary smoothly with respect to time. Also other practical questions 
could be mentioned which may be reduced to the case under consideration. 

l’he rotation of the strain trajectory at the corner point s =6 shall 

be called the quantity 

(4.2) 

It is obvious that for an arbitrary point on the second portion of 

the strain trajectory, on the basis of the preceding portion of the tra- 

jectory, it is impossible to construct any vectors (by means of linear 

operations on 3 and nl) which muld be linearly independent with re- 

spect to p and pl. From the isotropy postulate it follows that the single 

most general possible stress expression u1 at the point o1 in terms of 

strains will be the two-term law 

(6u = 51- G) (4.3) 
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FIG. 1. 

and S, S, will be functions of the trajectory invariants. The trajectory 

invariants are only the quantities s, 6s = s1 - s and r = cos 0, whereby 

u = (o/ s)a-‘and u = Q( 13) is a function, known for sinple loading. ‘Ihere- 

fore, the coefficients S and S, are functions only of the lengths of the 

portions s and 6s and the rotation r . 

s = s (s, T, 6s), S,r N = N (s, T, 6s) (4.41 

Let us introduce a normal unit vector n as a vector, lying in the 
plane of the vectors p and p1 

n=-_pctge+p,&, pI=pcos8+nsin8 (4.5) 

“Iben (4.3) may be represented in the form 

P=N+-&=N+~ 
T (4.6) 

Therefrom, designating for brevity the projections 6~ and 6a on p and 

n by 

k=(PcosfIp{-NsinBn)Es 

we find the expressions for P and N 

(4.8) 

These expressions (as we shall see), permit us to find the functions 

P and N of the arguments s, Ss, r from simple tests. Now, taking into 

account the relations 

p,6s = 6a, p 6s cos 8 = p (psa) = $ (6) 

we write down the stress-strain relation (4.3) in the form 

aa= N63-(N-P)~2(~*6a) = N&-(N-P) %T~S (4.9) 
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whereby N, P are considered to be known functions of s, 6s and r and 
therefore (4.9) represents the most general law of the relation Q --s 
for a broken line. lhe following theorem becomes obvious. 

Theorem. The functions N and P are fully determined from tests of com- 
bined extension and torsion of thin-walled tubes and coincide identically 
with functions determined by experiments of the n fan” type. 

The tests of Lenskii on the automatic testing machine of the Institute 
of Mechanics of the Academy of Sciences of the USSR realize a strain pro- 
gram: torsion of the tube up to different degrees of deformation (direc- 
tion cj. component of the strain vector 3g) and at each degree of de- 
formation further continued torsion (including strain reversal) and ex- 
tension along a rectilinear ray at an angle 8 with respect to the axls e3; 
for extension, the direction el. the component of the strain vector al. 
whereby at each corner point the fan of straight lines for different 
angles of inclination 8 is constructed; for each broken line a new speci- 
men is used. Graphs are constructed and the properties of the functions 
N and P are investigated. 

‘Ihe theorem follows from the fact that any space trajectory may be 
transferred from the plane (p, pl) to the plane (el, ‘es) by means of a 

rotation transformation and is therefore a con- 
sequence of the isotropy postulate, ‘Ihe functions 

FIG. 2. 
are determined by the arguments 31, 8 and 6s 

6s = J//83rz+ &I,~, &r= 6s cos 8, &+= 6s sin 0 

on the basis of measurement of the quantities 60, = ol’. - cl, 
aa, = o3 ’ to3 = 0). Ihe passage to P and N from (4.9) is obtained by re- 
placing 3 by s in P,N, and representing 0 in the form (4.2). 

‘lhe law (4.9) furnishes the expressions for the stresses in forms of 
deformations. Let us find the inverse relations, i.e. the representation 
of the law in stress space (isomorphism theorem). Squaring the left- and 
right-hand sides of (4.9) and designating the arc differential of the 
corresponding trajectory in us-space by 6 8, we note that, generally 
speaking, ( 6 0 ( will not be equal to 82, because the rectilinear portion 
after the break of the trajectory in 3, will not be rectilinear in u5 
and therefore 6 Z > (6 u ( (Fig. 2); we obtain the following expression 

) 6u I= 6s v/n;“+ (P"- N2) TV, 160 / < xc (4.10) 

Multiplying now (4.9) by u, we obtain 080 = Pa8 a. Let us designate 
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the angle between u and So by 9 and its cosine by t 

(4.11) t 
osu 

= cos 8 = - 
4 601 

We obtain then a second relation connecting ISo 1 ,,8 with as, 8 

(4:12) 

Relations (4.10) and (4.12) express ISal = /q -01 and t(8) in 
terms of P, N, r and&s, i.e. in terms of s = @-'(rr),lis and?($), and 
therefore for strain-hardening materials they make it possible to ex- 
press inversely P, N, r and6.s in terms ofu, ISol and t = 00~9. 

Assuming that such a transformation was performed, and solving (4.9) 
with respect to the strain a , we obtain finally the transformed law 

(4.13) 

For the fixed broken line considered in 3,, the angle 8 and r remain 
constant in increasing 6s; since from (4.12) for r = const, P and N 
change with an increase of 6s, the angle $I and the inclination t= cos% 
till change during the passage along the portion after the corner point 
inuS, i.e. the second portion of the trajectory will be curvilinear: 

Expanding the functions P(s, r, 6~1, N(s, r, 6s) into a series of 

p = P, (s, T) + 6s -+& + . . .) iv = N, (s, T) + 6s $$ + . . . 
we obtain the following for small 6s 

whereby, since from the #fan- PO, N,, are determined functions of r, this 
means that the first of the formulas (4.14) gives an expression of r in 
terms of t, i.e. P,, N,, b ecome known functions of t. To the corner point 
in 3, with rotation r there corresponds a corner point in u5 with rota- 
tion tO. The expressions for the stresses in terms of the strains and 
the strains in terms of the stresses remain in the form (4.91, (4.13) 
with a replacement of P, N, t and (da I by PO, No, tQ and8Z. 

5. Deformational anisotropy and the expression of elastic 
strains through stresses. ‘be anisotropy forming during the process 
of plastic deformations, as well as other mechanical properties, is in 
accord with the isotropy postulate and its consequences. For simple 
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loading, followed by unloading in any possible rectilinear direction, all 

formulas of Section 4 remain in force and give the general properties of 

the elastic deformational anisotropy, since the functions P, iV are known 

from tests for an arbitrary r = cos 0. As is known, experimental evidence 

shows that the process of unloading after preceding plastic deformations 

is not strictly linear, which explains our remark regarding the unload- 

ing along rectilinear directions. 

However, with a certain satisfactory degree of accuracy, the process 

of unloading along an arbitrary trajectory is reversible and linear with 

respect to the stress-strain relation, Under this ass~tion the elastic 

properties (deformational anisotropy) after elastoplastic simple loading 

are completely determined theoretically. Let us attach an index k, at 

the end point K of the process of simple loading, to all quantities per- 

taining to this point and let us consider infinitely small increments 

d 3 , do, corresponding to an arbitrary unloading path. 

These quantities are interrelated by the law (4.9), (4.13) which now 

takes on the form 

da = Nda - (IV - P) -$(ekds) 

or 
(3.1) 

whereby the index k is used as a superscript with vectors and as a sub- 

script with scalars. Under our assumptions these relations should be 

linear with respect to u and a not only in the vectorial but also in the 

general sense and therefore N and P should have constant (not dependent 

on r or CT, t) values, i.e. they should be determinable only by the 

point K 

P===Pk, N =Nk (5.2) 

ln certain versions of the theory of plasticity one considers instead 

of the general I total I deformation a , the plastic deformation np, 

where up is understood to be the difference between the total deforma- 

tion and the elastic deformation ue, which is calculated from the stress 

o in accordance with Hooke’s law for initial (isotropic) state of the 

body ( se=o/G); but th ere is no justification for doing so, because 

during the process of deformation the body becomes anisotropic and the 

elastic component of the total deformation is an unknown linear function 

of stress, and therefore the plastic strain nP cannot be in principle 

determined theoretically in terms of 3 and u if the path of the preced- 

ing loading is not given and if the elastic properties after unloading 

are not investigated. From the isotropy postulate follows naturally the 
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representation of the increment of plastic defonation in terms of the 

stress vector, for example in the fonn (for analytical trajectories) 

daPz Q,,~ dr, (n =Q>l,WJ) (5.3) 

where the Q, will depend in a more or less complicated fashion on the in- 

ternal geometry of the stress trajectory u in the space as; thereby oP 

in an experiment is understood to be the measurable quantity of residual 

deformation (for unloading, when u = 0) and therefore the Q,, may be de- 

termined in principle. However, relation (5.3) and other similar ones, 

in which the increment of the tensor of plastic deformations d 3 ijP is 

expressible in an arbitrary manner in terms of the stress tensor (T . ., 
do not represent theories of plasticity, i.e. do not permit the for&a- 

tion mathematically of the problem of deformations of a body in a non- 

homogeneous state of stress as long as the expression for elastic strain 

se= a-.---P (5.4) 

is not given in tens of stress o. Only this relation, together with 

(5.3), will establish, in the final analysis, the relation between the 

components of the stress tensor and the displacement components in the 

body, i.e. coaplete the system of equations of equilibrium or of motion. 

For elastic deformations also the postulate of isotropy enables us to 

write down the expression which for analytical trajectories can always 

lead to one of the forms: 

a(e) z R” Q +R_k n,m = 0.1,1,3) 
5.5) 

Here the vectors dnak/dZ kn are relative to a point k of the loading 

trajectory, the parenthesis contains the scalar product of these vectors 

and the running vectors o, s , while A,,, Snn are parameters of elastic 

anisotropy, which depend on the curvature of the loading trajectory to 

the point K, as is indicated by a superscript. It follows from this, 

among others, that the deformational anisotropy is determined in the most 

general case by eleven (RI, = Rnr) elastic “constants”, which determine 

the shear properties of the material. The plastic strain vector oP, in 

accordance with (5.9) and (5.5), is now completely determined, if the 

“constants” R,,, are known: 

In the investigated case of defonnational anisotropy for simple load- 
ing the integration of EQuation (5.1) under condition 

u = &, 3k k _ cD-1 (Ok) 
a-z $ = o. Q __ ___ Q 

k 

h =k 
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gives 

Nk-Pkak ~=&-.-~+--- 
Nk 

- (&)-g 
N,P, uk2 (5.7) 

Sbce for o. = 0 there should be a = sp, we find from (5.7) the 

plastic strain 

uk 5~ = $ - - r=: 
‘k3k -“& 0’ - 

'k 'k 'k 
(5.8) 

and subtracting it from (5.7) we obtain the expression of elastic strain, 
i.e. the law of defoxmational anisotropy 

Q 5”) (5.9) 

Hence, the tensor of elastic constants of deformational anisotropy 
depends in a fully determined manner on maximum stress for simple load- 
ing o and on tuu constants completely determinable by ok from sinple 
tests with a thin-walled tube subjected to extension and torsion in the 
unloading stage. It is seen from (5.9) that PL is the modulus of elasti- 
city in the direction ok, 
dicular to ok. 

and N, is the modulus in the direction pexpen- 

Solving (5.9) with respect to u, we obtain 

o = Nkae - (?& - Pk) $ (3k5e) 

- 
(5.10) 

Passing to a coordinate representation, we write (5.9) and (5.10) in 
the form 

Gj = 2 aijmn %n, qj = 2 a ijmn 3mne (5.11) 

The tensors of the elastic *constants* have thereby the following ex- 
pressions 

(5.12) 

where 8 . . = 1 only for simultaneous equality i = m, j = n and in all 
other c%z is equal to zero. The invariants are 

ai = (a~~)~, 
All eleven parameters of elastic anisotropy being formed after an 

arbitrary loading path up to the point K may be found from the same 
tests, in which this loading path is realized. To this end it is suffi- 
cient, to conduct unloading tests along arbit%ary, but different trajec- 
tories, measuring each time 5 for 60 ) and ne (or 6 3’) and solving 
the system (5.5) with respect to the unknown R&a. 
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6. ‘Ike loading surface, secondary plastic deformations and 

some particular cases. For each strain trajectory o(s) (in 8,) and 

stress trajectory a(X) ( in Q~), limiting surfaces may be constructed 

which possess the property that for secondary loading, after unloading 

from the pointK and the appearance of the tip of the vector a (in 3,) 

on the limiting strain surface and, which is the same, the appearance of 

the vector Q (in 05) on the limiting stress surface (loading surface), 

secondary plastic deformations begin to form, i.e. the relation (5.5) is 

violated. 'lhe case of non-strain-hardening materials, when the limiting 

surface is a sphere (r.3'~~ = uI (where uQ is the constant-yield point) 

and when the space u5 degenerates into a four-dimensional space, is not 

considered here, because in this case a single-valued relation between 

3 and u does not, in principle, exist. 

lhe most general form of the limiting surface in 3, will be 

X” 9 - q (Xl, =z, =3, x4)=0 (6.1) 

where the invariants n, are, within factors, the cosines of the angles 

between the vector and four arbitrary linearly-independent vectors, 

constructed at the point K; in the case of an analytical trajectory (to 

the point K) the invariants ~a may be taken, for example, in the form 

a cl%* 
iT,+1 = - . - 

a dskn 
(n =o, 1, 2. 3), 

where pak are four unit vectors of 

the strain trajectory. 

In the space u5 the equation of 

will be of the form 

or En' = pnk - + (n = 1, 2, 3. 4) (6.2) 

the Frenet pentagon at the point K of 

the limiting surface for the point K 

e = = -1 (PI9 P2, p3, p4) = 0 (6.3) 

kere pa are four invariants analogous to n,,. For an analytical trajec- 

tory (to the point K) the invariants pa may be taken in the form 

Q dnak 
pn+1= __ * - 

"Ok,, dZn 
(n =O,l, 2,3) (akn=1+1) @4) 

such that the pn 

dZwk 
are the cosines of the angles between u and d”-‘ok/ 

k 

p2= I 
dQk 

do” 

I I 

= - d”” 
=q 
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'lhe possibility of representing the surfaces in the form (6.1), (6.3) 

is a consequence of the isotropy postulate. 

It should be taken into account thereby, that the very form of the 

functions 7 and f depends on the trajectories a (s) and u(Z), i.e. 

Equations (6.1) and (6.3) are functional. 'lherefore, the passage from 

the surface $J to the surface Ijl+ S$ cannot be obtained by means of 

formal differentiation of (6.3) with respect to u and p,, but depends 

also on the point on the surface (6.3) at which S$ is considered and 

also on the vector 6 u at this point. And only in the case when the tra- 

jectory to the point K is completely determined and the point K is fixed, 
do the functions 7 and f become usual functions of the arguments indicat- 
ed in (6.1), (6.3). Let us explain in greater detail these assertions, 

to which end we find the normal, for example to the surface +, at some of 

its points u: 

mn = grad 9 = grad Q - **grad pi 
t 

(i=1,2,3,4) 

. - 

grad Q = $ , gradpi=-$pi+o~l$$$ 
, k (6.5) 

whereby m is the modulus of the right-hand side of (6.5) and therefore n 
is the unit vector, normal to the surface += 0. 

Let us consider an arbitrary small increment 60 at this same point u, 
having the normal component 

&sn= n * 60 (6.6) 

On the basis of the definition of the surface $= 0 the plastic de- 

formations will not increase, i.e. 60 will be determined from (5.5) if 

6ct,=ne6u<0 (6.7) 

and, conversely, will increase, if 

6a, = II . 6a > 0 (6.8) 

If the transition through the limiting surface of strain-hardening 

materials is continuous, then on the surface tL = 0 the condition 

n&s =0 (6.9) 

must be satisfied. 

Equation (6.9) represents an identity, which is satisfied by the func- 

tion f. 
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